Low-power 2-input NAND Schmitt trigger Rev. 02 — 15 June 2009

Product data sheet

1. **General description**

The 74AUP1G132 provides the single 2-input NAND Schmitt trigger function which accept standard input signals. They are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals.

This device ensures a very low static and dynamic power consumption across the entire V_{CC} range from 0.8 V to 3.6 V.

This device is fully specified for partial Power-down applications using I_{OFF}. The I_{OFF} circuitry disables the output, preventing the damaging backflow current through the device when it is powered down.

The inputs switch at different points for positive and negative-going signals. The difference between the positive voltage V_{T+} and the negative voltage V_{T-} is defined as the input hysteresis voltage V_H.

2. **Features**

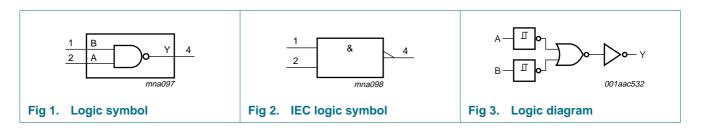
- Wide supply voltage range from 0.8 V to 3.6 V
- High noise immunity
- ESD protection:
 - HBM JESD22-A114E Class 3A exceeds 5000 V
 - MM JESD22-A115-A exceeds 200 V
 - CDM JESD22-C101C exceeds 1000 V
- Low static power consumption; $I_{CC} = 0.9 \,\mu A$ (maximum)
- Latch-up performance exceeds 100 mA per JESD 78 Class II
- Inputs accept voltages up to 3.6 V
- Low noise overshoot and undershoot < 10 % of V_{CC}
- I_{OFF} circuitry provides partial Power-down mode operation
- Multiple package options
- Specified from –40 °C to +85 °C and –40 °C to +125 °C

Applications 3.

- Wave and pulse shaper
- Astable multivibrator
- Monostable multivibrator.

Low-power 2-input NAND Schmitt trigger

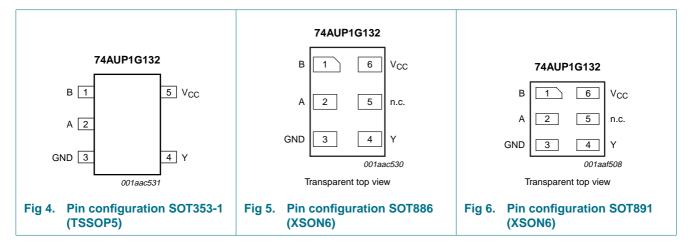
4. Ordering information


Table 1. Orderin	Table 1. Ordering information											
Type number Package												
	Temperature range	Name	Description	Version								
74AUP1G132GW	–40 °C to +125 °C	TSSOP5	plastic thin shrink small outline package; 5 leads; body width 1.25 mm	SOT353-1								
74AUP1G132GM	–40 °C to +125 °C	XSON6	plastic extremely thin small outline package; no leads; 6 terminals; body 1 \times 1.45 \times 0.5 mm	SOT886								
74AUP1G132GF	–40 °C to +125 °C	XSON6	plastic extremely thin small outline package; no leads; 6 terminals; body 1 \times 1 \times 0.5 mm	SOT891								

5. Marking

Table 2. Marking	
Type number	Marking code ^[1]
74AUP1G132GW	aE
74AUP1G132GM	aE
74AUP1G132GF	aE

[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.


6. Functional diagram

Low-power 2-input NAND Schmitt trigger

7. Pinning information

7.1 Pinning

7.2 Pin description

Table 3. Pin description									
Symbol	Pin		Description						
	TSSOP5	XSON6							
В	1	1	data input B						
A	2	2	data input A						
GND	3	3	ground (0 V)						
Y	4	4	data output Y						
n.c.	-	5	not connected						
V _{CC}	5	6	supply voltage						

8. Functional description

Table 4.Function table^[1]

Input		Output
Α	В	Y
L	L	Н
L	Н	Н
Н	L	Н
Н	Н	L

[1] H = HIGH voltage level; L = LOW voltage level.

Low-power 2-input NAND Schmitt trigger

9. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

					,
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+4.6	V
I _{IK}	input clamping current	V _I < 0 V	-50	-	mA
VI	input voltage		<u>[1]</u> –0.5	+4.6	V
I _{OK}	output clamping current	V _O < 0 V	-50	-	mA
Vo	output voltage	Active mode and Power-down mode	<u>[1]</u> –0.5	+4.6	V
lo	output current	$V_{O} = 0 V$ to V_{CC}	-	±20	mA
I _{CC}	supply current		-	50	mA
I _{GND}	ground current		-50	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 \ ^{\circ}C \text{ to } +125 \ ^{\circ}C$	[2] _	250	mW

[1] The minimum input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] For TSSOP5 packages: above 87.5 °C the value of P_{tot} derates linearly with 4.0 mW/K. For XSON6 packages: above 118 °C the value of P_{tot} derates linearly with 7.8 mW/K.

10. Recommended operating conditions

Table 6.	Recommended operating conditions						
Symbol	Parameter	Conditions	Min	Max	Unit		
V _{CC}	supply voltage		0.8	3.6	V		
VI	input voltage		0	3.6	V		
Vo	output voltage	Active mode	0	V_{CC}	V		
		Power-down mode; $V_{CC} = 0 V$	0	3.6	V		
T _{amb}	ambient temperature		-40	+125	°C		

11. Static characteristics

Table 7. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = 2	5 °C					
V _{OH}	HIGH-level output voltage	$V_I = V_{T+} \text{ or } V_{T-}$				
		I_{O} = –20 $\mu\text{A};V_{CC}$ = 0.8 V to 3.6 V	$V_{CC} - 0.1$	-	-	V
		$I_{O} = -1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$	$0.75 imes V_{CC}$	-	-	V
		$I_{O} = -1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	1.11	-	-	V
		$I_{O} = -1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.32	-	-	V
		$I_{O} = -2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$	2.05	-	-	V
		$I_{O} = -3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.9	-	-	V
		$I_{O} = -2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.72	-	-	V
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.6	-	-	V
74AUP1G132_2					© NXP B.V. 2009. /	All rights reserved

Low-power 2-input NAND Schmitt trigger

Symbol	Parameter	Conditions	Min	Тур	Max	Uni
V _{OL}	LOW-level output voltage	$V_{I} = V_{T+}$ or V_{T-}				
		I_{O} = 20 μ A; V_{CC} = 0.8 V to 3.6 V	-	-	0.1	V
		I _O = 1.1 mA; V _{CC} = 1.1 V	-	-	$0.3 \times V_{CC}$	V
		I_{O} = 1.7 mA; V_{CC} = 1.4 V	-	-	0.31	V
		I _O = 1.9 mA; V _{CC} = 1.65 V	-	-	0.31	V
		I_{O} = 2.3 mA; V_{CC} = 2.3 V	-	-	0.31	V
		I_{O} = 3.1 mA; V_{CC} = 2.3 V	-	-	0.44	V
		$I_{O} = 2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.31	V
		$I_0 = 4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.44	V
I	input leakage current	$V_I = GND$ to 3.6 V; $V_{CC} = 0$ V to 3.6 V	-	-	±0.1	μA
OFF	power-off leakage current	V_{I} or V_{O} = 0 V to 3.6 V; V_{CC} = 0 V	-	-	±0.2	μA
∆I _{OFF}	additional power-off leakage current	V_1 or $V_0 = 0$ V to 3.6 V; $V_{CC} = 0$ V to 0.2 V	-	-	±0.2	μA
сс	supply current	$\label{eq:VI} \begin{array}{l} V_{I} = GND \text{ or } V_{CC}; \ I_{O} = 0 \ A; \\ V_{CC} = 0.8 \ V \ \text{to} \ 3.6 \ V \end{array}$	-	-	0.5	μA
∆l _{CC}	additional supply current		<u>[1]</u> _	-	40	μA
CI	input capacitance	$V_I = GND \text{ or } V_{CC}; V_{CC} = 0 \text{ V to } 3.6 \text{ V}$	-	1.1	-	pF
Co	output capacitance	$V_{O} = GND; V_{CC} = 0 V$	-	1.7	-	pF
T _{amb} = -4	40 °C to +85 °C					
V _{он}	HIGH-level output voltage	$V_I = V_{T+}$ or V_{T-}				
		I_O = –20 $\mu\text{A};V_{CC}$ = 0.8 V to 3.6 V	$V_{CC}-0.1$	-	-	V
		$I_{O} = -1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$	$0.7\times V_{CC}$	-	-	V
		$I_{O} = -1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	1.03	-	-	V
		$I_{O} = -1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.30	-	-	V
		I_{O} = -2.3 mA; V_{CC} = 2.3 V	1.97	-	-	V
		I_{O} = -3.1 mA; V_{CC} = 2.3 V	1.85	-	-	V
		$I_{O} = -2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.67	-	-	V
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.55	-	-	V
/ _{OL}	LOW-level output voltage	$V_I = V_{T+}$ or V_{T-}				
		I_O = 20 $\mu A;$ V_{CC} = 0.8 V to 3.6 V	-	-	0.1	V
		I_{O} = 1.1 mA; V_{CC} = 1.1 V	-	-	$0.3 \times V_{CC}$	V
		$I_0 = 1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	-	-	0.37	V
		I_{O} = 1.9 mA; V_{CC} = 1.65 V	-	-	0.35	V
		I_{O} = 2.3 mA; V_{CC} = 2.3 V	-	-	0.33	V
		I_{O} = 3.1 mA; V_{CC} = 2.3 V	-	-	0.45	V
		I_{O} = 2.7 mA; V_{CC} = 3.0 V	-	-	0.33	V
		I_{O} = 4.0 mA; V_{CC} = 3.0 V	-	-	0.45	V
1	input leakage current	$V_I = GND$ to 3.6 V; $V_{CC} = 0$ V to 3.6 V	-	-	±0.5	μA
OFF	power-off leakage current	$V_{\rm I}~\text{or}~V_{\rm O}$ = 0 V to 3.6 V; $V_{\rm CC}$ = 0 V	-	-	±0.5	μA

Table 7. Static characteristics ... continued

Low-power 2-input NAND Schmitt trigger

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
ΔI_{OFF}	additional power-off leakage current	V_1 or $V_0 = 0$ V to 3.6 V; $V_{CC} = 0$ V to 0.2 V	-	-	±0.6	μA
I _{CC}	supply current	$\label{eq:VI} \begin{array}{l} V_{I} = GND \text{ or } V_{CC}; I_{O} = 0 \; A; \\ V_{CC} = 0.8 \; V \; \text{to} \; 3.6 \; V \end{array}$	-	-	0.9	μA
Δl _{CC}	additional supply current		<u>[1]</u> -	-	50	μA
T _{amb} = -	40 °C to +125 °C					
V _{OH}	HIGH-level output voltage	$V_{I} = V_{T+}$ or V_{T-}				
		I_{O} = –20 $\mu\text{A};V_{CC}$ = 0.8 V to 3.6 V	V _{CC} – 0.11	-	-	V
		$I_0 = -1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$	$0.6 \times V_{CC}$	-	-	V
		$I_{O} = -1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	0.93	-	-	V
		$I_{O} = -1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.17	-	-	V
		$I_{O} = -2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.77	-	-	V
		$I_{O} = -3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.67	-	-	V
		$I_{O} = -2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.40	-	-	V
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.30	-	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{T+}$ or V_{T-}				
		I_{O} = 20 $\mu A; V_{CC}$ = 0.8 V to 3.6 V	-	-	0.11	V
		$I_0 = 1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$	-	-	$0.33 \times V_{CC}$	V
		$I_0 = 1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	-	-	0.41	V
		$I_0 = 1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$	-	-	0.39	V
		$I_0 = 2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.36	V
		$I_0 = 3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.50	V
		$I_0 = 2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.36	V
		$I_0 = 4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.50	V
կ	input leakage current	$V_{\rm I}$ = GND to 3.6 V; $V_{\rm CC}$ = 0 V to 3.6 V	-	-	±0.75	μΑ
I _{OFF}	power-off leakage current	$V_{I} \text{ or } V_{O}$ = 0 V to 3.6 V; V_{CC} = 0 V	-	-	±0.75	μΑ
ΔI_{OFF}	additional power-off leakage current	$ V_{I} \text{ or } V_{O} = 0 \text{ V to } 3.6 \text{ V}; $	-	-	±0.75	μΑ
I _{CC}	supply current	$\label{eq:VI} \begin{array}{l} V_{I} = GND \text{ or } V_{CC}; \ I_{O} = 0 \ A; \\ V_{CC} = 0.8 \ V \text{ to } 3.6 \ V \end{array}$	-	-	1.4	μΑ
ΔI_{CC}	additional supply current	$V_{I} = V_{CC} - 0.6 \text{ V}; I_{O} = 0 \text{ A};$ $V_{CC} = 3.3 \text{ V}$	<u>[1]</u> -	-	75	μA

Table 7. Static characteristics ... continued

[1] One input at V_{CC} – 0.6 V, other input at V_{CC} or GND.

Low-power 2-input NAND Schmitt trigger

12. Dynamic characteristics

Table 8. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V; for test circuit see Figure 8.

Symbol	Parameter	Conditions		25 °C		-40) °C to +1	25 °C	Unit
				Typ ^[1]	Max	Min	Max (85 °C)	Max (125 °C)	-
C _L = 5 p	F								
pd	propagation delay	A or B to Y; see Figure 7							
		$V_{CC} = 0.8 V$	-	22.5	-	-	-	-	ns
		$V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$	2.6	6.3	13.4	2.4	15.1	16.6	ns
		$V_{CC} = 1.4 \text{ V} \text{ to } 1.6 \text{ V}$	2.2	4.6	8.2	1.9	9.7	10.7	ns
		V_{CC} = 1.65 V to 1.95 V	1.9	3.9	6.6	1.7	7.9	8.7	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7	3.2	5.3	1.5	6.2	6.8	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	1.6	2.9	4.7	1.4	5.6	6.2	ns
C _L = 10	pF								
t _{pd}	propagation delay	A or B to Y; see Figure 7	1						
		$V_{CC} = 0.8 V$	-	26.1	-	-	-	-	ns
		$V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$	3.0	7.2	15.4	2.7	17.3	19.0	ns
		$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$	2.5	5.2	9.3	2.2	11.0	12.1	ns
		$V_{CC} = 1.65 \text{ V} \text{ to } 1.95 \text{ V}$	2.3	4.5	7.5	2.0	9.0	9.9	ns
		V_{CC} = 2.3 V to 2.7 V	2.1	3.8	6.1	1.8	7.2	7.9	ns
		V_{CC} = 3.0 V to 3.6 V	2.0	3.5	5.5	1.8	6.5	7.2	ns
C _L = 15	pF								
t _{pd}	propagation delay	A or B to Y; see Figure 7							
		$V_{CC} = 0.8 V$	-	29.6	-	-	-	-	ns
		$V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$	3.3	8.0	17.2	3.0	19.4	21.3	ns
		$V_{CC} = 1.4 \text{ V} \text{ to } 1.6 \text{ V}$	2.8	5.8	10.4	2.5	12.3	13.5	ns
		V_{CC} = 1.65 V to 1.95 V	2.6	5.0	8.3	2.3	10.0	11.0	ns
		V_{CC} = 2.3 V to 2.7 V	2.3	4.2	6.7	2.1	7.9	8.7	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	2.2	3.9	6.1	2.0	7.3	8.0	ns
C _L = 30	pF								
t _{pd}	propagation delay	A or B to Y; see Figure 7	1						
		$V_{CC} = 0.8 V$	-	39.9	-	-	-	-	ns
		V_{CC} = 1.1 V to 1.3 V	4.3	10.2	22.6	3.8	25.4	27.9	ns
		V_{CC} = 1.4 V to 1.6 V	3.6	7.3	13.3	3.2	15.8	17.4	ns
		V_{CC} = 1.65 V to 1.95 V	3.2	6.3	10.6	2.9	12.8	14.1	ns
		V_{CC} = 2.3 V to 2.7 V	3.0	5.3	8.5	2.7	10.1	11.1	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	2.8	5.0	7.8	2.7	9.2	10.1	ns

Low-power 2-input NAND Schmitt trigger

Symbol	Parameter	Conditions		25 °C		-40	°C to +1	25 °C	Unit	
				Min	Тур <u>[1]</u>	Мах	Min	Max (85 °C)	Max (125 °C)	
C _L = 5 pl	F, 10 pF, 15 pF and 3	30 pF								
. –	power dissipation capacitance	$f_i = 1 \text{ MHz};$ V _I = GND to V _{CC}	[3]							
		$V_{CC} = 0.8 V$		-	2.6	-	-	-	-	pF
		$V_{CC} = 1.1 \text{ V} \text{ to } 1.3 \text{ V}$		-	2.9	-	-	-	-	pF
		V_{CC} = 1.4 V to 1.6 V		-	3.0	-	-	-	-	pF
		V_{CC} = 1.65 V to 1.95 V		-	3.2	-	-	-	-	pF
		V_{CC} = 2.3 V to 2.7 V		-	3.8	-	-	-	-	pF
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$		-	4.4	-	-	-	-	pF

Table 8. Dynamic characteristics ... continued

[1] All typical values are measured at nominal V_{CC}.

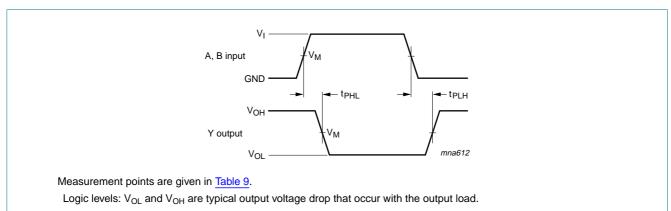
[2] t_{pd} is the same as t_{PLH} and t_{PHL} .

[3] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} \times N + \Sigma (C_{L} \times V_{CC}^{2} \times f_{o}) \text{ where:}$

 f_i = input frequency in MHz;

 f_0 = output frequency in MHz;


C_L = output load capacitance in pF;

 V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs.

13. Waveforms

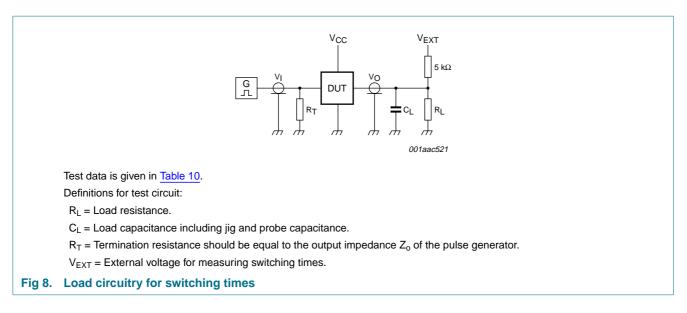


Fig 7. The data input (A or B) to output (Y) propagation delays

Table 9. **Measurement points**

Supply voltage	Output	Input				
V _{CC}	V _M	V _M	VI	$t_r = t_f$		
0.8 V to 3.6 V	$0.5 imes V_{CC}$	$0.5 \times V_{CC}$	V _{CC}	≤ 3.0 ns		

Low-power 2-input NAND Schmitt trigger

Table 10. Test data

Supply voltage	Load		V _{EXT}		
V _{CC}	CL	R _L [1]	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}
0.8 V to 3.6 V	5 pF, 10 pF, 15 pF and 30 pF	5 k Ω or 1 M Ω	open	GND	$2 \times V_{CC}$

[1] For measuring enable and disable times $R_L = 5 k\Omega$, for measuring propagation delays, setup and hold times and pulse width $R_L = 1 M\Omega$.

Low-power 2-input NAND Schmitt trigger

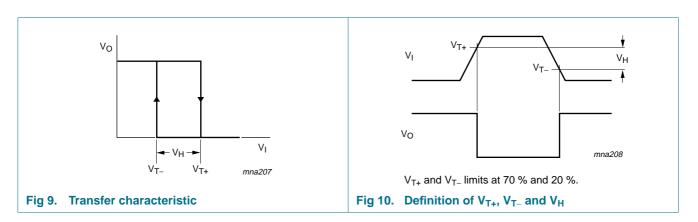
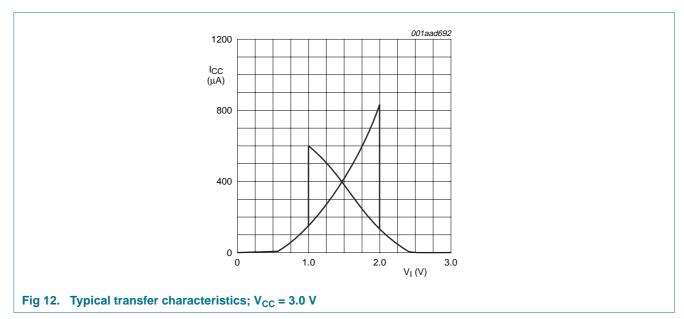

14. Transfer characteristics

Table 11. Transfer characteristics

Voltages are referenced to GND (ground = 0 V; for test circuit see Figure 8.

Symbol	Parameter	Conditions		25 °C		–40 °C to +125 °C			Unit
				Тур	Мах	Min	Max (85 °C)	Max (125 °C)	
V _{T+}	positive-going	see Figure 9 and Figure 10							
	threshold voltage	$V_{CC} = 0.8 V$	0.30	-	0.60	0.30	0.60	0.62	V
		$V_{CC} = 1.1 V$	0.53	-	0.90	0.53	0.90	0.92	V
		$V_{CC} = 1.4 V$	0.74	-	1.11	0.74	1.11	1.13	V
		V _{CC} = 1.65 V	0.91	-	1.29	0.91	1.29	1.31	V
		$V_{CC} = 2.3 V$	1.37	-	1.77	1.37	1.77	1.80	V
		$V_{CC} = 3.0 V$	1.88	-	2.29	1.88	2.29	2.32	V
V_{T-}	negative-going threshold voltage	see Figure 9 and Figure 10							
		$V_{CC} = 0.8 V$	0.10	-	0.60	0.10	0.60	0.60	V
		$V_{CC} = 1.1 V$	0.26	-	0.65	0.26	0.65	0.65	V
		$V_{CC} = 1.4 V$	0.39	-	0.75	0.39	0.75	0.75	V
		V _{CC} = 1.65 V	0.47	-	0.84	0.47	0.84	0.84	V
		$V_{CC} = 2.3 V$	0.69	-	1.04	0.69	1.04	1.04	V
		$V_{CC} = 3.0 V$	0.88	-	1.24	0.88	1.24	1.24	V
V _H	hysteresis voltage	$(V_{T+} - V_{T-})$; see Figure 9, Figure 10, Figure 11 and Figure 12							
		$V_{CC} = 0.8 V$	0.07	-	0.50	0.07	0.50	0.50	V
		V _{CC} = 1.1 V	0.08	-	0.46	0.08	0.46	0.46	V
		$V_{CC} = 1.4 V$	0.18	-	0.56	0.18	0.56	0.56	V
		V _{CC} = 1.65 V	0.27	-	0.66	0.27	0.66	0.66	V
		$V_{CC} = 2.3 V$	0.53	-	0.92	0.53	0.92	0.92	V
		$V_{CC} = 3.0 V$	0.79	-	1.31	0.79	1.31	1.31	V


15. Waveforms transfer characteristics



NXP Semiconductors

74AUP1G132

Low-power 2-input NAND Schmitt trigger

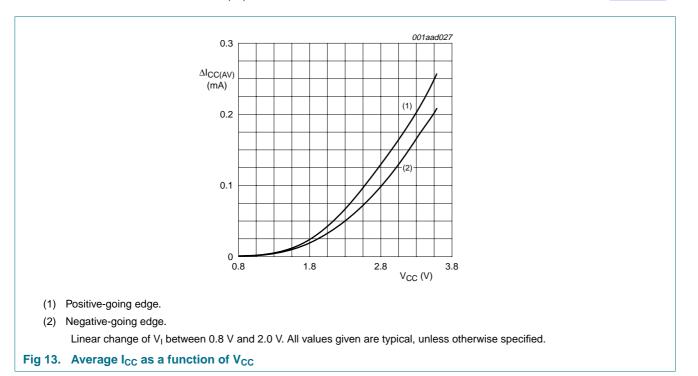
Low-power 2-input NAND Schmitt trigger

16. Application information

The slow input rise and fall times cause additional power dissipation, this can be calculated using the following formula:

 $P_{add} = f_i \times (t_r \times \Delta I_{CC(AV)} + t_f \times \Delta I_{CC(AV)}) \times V_{CC}$ where:

 P_{add} = additional power dissipation (μ W);

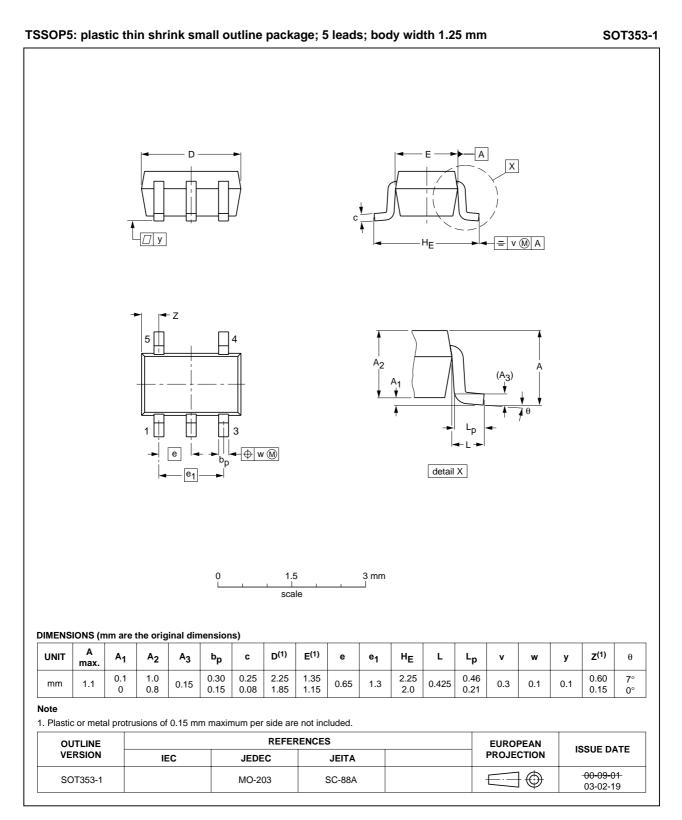

 $f_i = input frequency (MHz);$

 t_r = input rise time (ns); 10 % to 90 %;

 t_f = input fall time (ns); 90 % to 10 %;

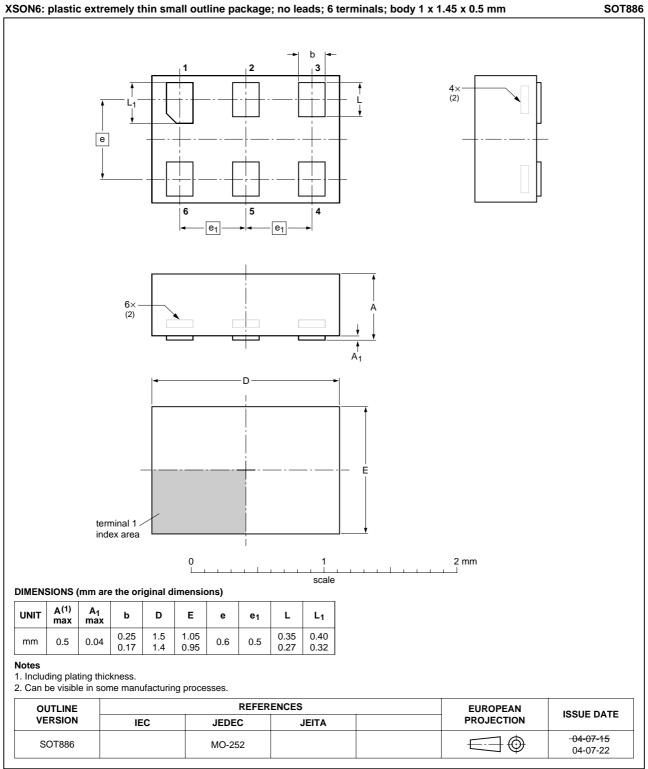
 $\Delta I_{CC(AV)}$ = average additional supply current (µA).

Average $\Delta I_{CC(AV)}$ differs with positive or negative input transitions, as shown in Figure 13.



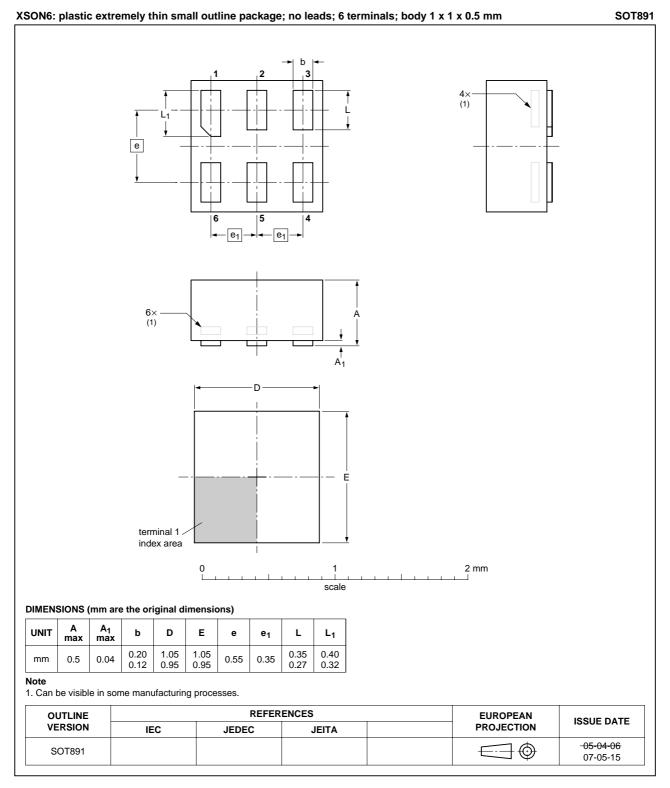
NXP Semiconductors

74AUP1G132


Low-power 2-input NAND Schmitt trigger

17. Package outline

Fig 14. Package outline SOT353-1 (TSSOP5)


Low-power 2-input NAND Schmitt trigger

XSON6: plastic extremely thin small outline package; no leads; 6 terminals; body 1 x 1.45 x 0.5 mm

Fig 15. Package outline SOT886 (XSON6)

Low-power 2-input NAND Schmitt trigger

Fig 16. Package outline SOT891 (XSON6)

Low-power 2-input NAND Schmitt trigger

18. Abbreviations

Table 12.	able 12. Abbreviations		
Acronym	Description		
CDM	Charged Device Model		
CMOS	Complementary Metal Oxide Semiconductor		
DUT	Device Under Test		
ESD	ElectroStatic Discharge		
HBM	Human Body Model		
MM	Machine Model		
TTL	Transistor-Transistor Logic		

19. Revision history

Table 13. Revisio	n history			
Document ID	Release date	Data sheet status	Change notice	Supersedes
74AUP1G132_2	20090615	Product data sheet	-	74AUP1G132_1
Modifications:	• <u>Table 7</u> : the changed.	conditions for HIGH-level outp	out voltage and LOW-level o	output voltage have been
74AUP1G132_1	20061020	Product data sheet	-	-

Low-power 2-input NAND Schmitt trigger

20. Legal information

20.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

20.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

20.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

20.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

21. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

NXP Semiconductors

74AUP1G132

Low-power 2-input NAND Schmitt trigger

22. Contents

1	General description 1
2	Features 1
3	Applications 1
4	Ordering information 2
5	Marking 2
6	Functional diagram 2
7	Pinning information 3
7.1	Pinning 3
7.2	Pin description 3
8	Functional description 3
9	Limiting values 4
10	Recommended operating conditions 4
11	Static characteristics 4
12	Dynamic characteristics 7
13	Waveforms 8
14	Transfer characteristics 10
15	Waveforms transfer characteristics 10
16	Application information
17	Package outline 13
18	Abbreviations 16
19	Revision history 16
20	Legal information 17
20.1	Data sheet status 17
20.2	Definitions 17
20.3	Disclaimers
20.4	Trademarks 17
21	Contact information 17
22	Contents 18

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2009.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 15 June 2009 Document identifier: 74AUP1G132_2

